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Abstract. Recent experiments have generated a renewed interest in the properties of the
degenerate valence states in semiconductors under the influence of a uniform external electric
field. In response, a number of authors have proposed that the standard Luttinger–Kohn effective-
mass Hamiltonian should be modified to include the energy of interaction between the electric field
and the dipole matrix elements of the relevant zone-centre Bloch functions. This article examines
these proposals by comparing the proposed dipole interaction with rigorous derivations of the field-
dependent Hamiltonian in the Bloch and Luttinger–Kohn representations. It is shown that the dipole
matrix element of a unit cell is not a suitable foundation for a Hamiltonian because it depends on
the choice of unit cell, which is arbitrary. Moreover, the correct Luttinger–Kohn Hamiltonian has
no wave-vector-independent matrix elements that are linear in the applied field E , except for small
terms of relativistic origin. Therefore, the proposed modifications to the Luttinger–Kohn theory
are not valid. The correct form of the Luttinger–Kohn Hamiltonian is derived here through terms
of order k3, kE , and E2, along with the momentum matrix to first order in k and E . In addition,
the recent discovery of field-induced mixing at the Brillouin zone boundary in the Luttinger–Kohn
representation is studied in detail.

1. Introduction

The electronic properties of a periodic crystal in a uniform electric field have been of interest
throughout the history of solid-state physics. Although conceptually simple, the problem
is subtle mathematically because the scalar potential of the field is unbounded and non-
periodic. Consequently, this problem has been studied and debated since the advent of quantum
mechanics (Bloch 1928, Jones and Zener 1934, Zener 1934, Houston 1940) through to the
present day. Perhaps the best-known controversy is a long-running argument over the existence
of Wannier–Stark localization (Wannier 1960, 1962, Zak 1972, Nenciu 1991), which was only
resolved in modern times (Mendez et al 1988, Voisin et al 1988).

Research in this area has proceeded primarily from the standpoint of ‘effective-Hamil-
tonian’ theory (Wannier 1960, 1962, Blount 1962, Zak 1972, Nenciu 1991, Callaway 1991), in
which the electron is viewed as having a kinetic energy determined by the dispersion relation
of the unperturbed crystal, and a potential energy due to the field alone. This is an extremely
useful but approximate way of describing the problem. The critical question is, to what extent
must this picture be modified to account for the mixing of different Bloch bands caused by the
electric field?

The vast majority of research on this topic has focused on the properties of non-degenerate
bands. This problem is sufficiently intricate to generate a wealth of interesting physics, and
there are undoubtedly many avenues yet to be explored. However, in the 1990s, interest began
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to shift towards the additional difficulties posed by the presence of degeneracies in the energy
band structure. A major stimulus was the discovery of the quantum-well Pockels effect by
Kwok et al (1992). In this effect, the optical properties of a (001) GaAs/AlAs quantum well
in a [001] electric field were found to exhibit strong in-plane polarization anisotropy (for other
material systems see Krebs et al (1998) and Platonov et al (1999)). The anisotropy arises
from a reduction in crystal symmetry caused by the electric field and by the change in material
properties at a heterojunction. This broken symmetry leads to a mixing of the degenerate
valence-band states that is not included in the effective-mass approximation of Luttinger and
Kohn (1955), which is the most widely used theoretical tool for the study of valence electrons
in semiconductors.

Much recent work has therefore been devoted to finding ways of incorporating such
mixing into effective-mass theory. Valence-band mixing at a heterojunction is now fairly
well understood from both the phenomenological (Aleı̆ner and Ivchenko 1992, Ivchenko et al
1993, 1996) and microscopic perspectives (Foreman 1996, 1998, Burt and Foreman 1999).
The mechanisms by which this mixing leads to optical anisotropy are also well established
(Krebs and Voisin 1996, Magri and Ossicini 1998, Ivchenko et al 1998).

However, the contribution from the electric field has proved more troublesome. Although
the basic tools needed to solve this problem are already available in the literature, there are
many conceptual traps for the unwary. Several different Hamiltonians have been proposed in
recent years, some of which contradict the results obtained by earlier authors. The objective
of the present article is to examine these proposals at the most fundamental level, and thereby
to resolve the current state of confusion in the literature.

An electric field can break the symmetry of a crystal in two ways: by shifting the
equilibrium positions of the atomic nuclei, and by polarizing the electrons. The former
contribution may be treated using deformation-potential theory (Bir and Pikus 1974, Blacha
et al 1984), which is not a subject of controversy. The present article therefore focuses
exclusively on electronic polarization, assuming throughout that the nuclei are fixed in position
at their zero-field equilibrium locations.

Three major lines of approach have been used to derive models for field-induced valence-
band mixing. The simplest and (in recent years) most widely used approach is to construct a
Hamiltonian from matrix elements of the dipole operator as follows. An electron of charge
−e in a uniform electric field E has potential energy

U(x) = eE · x (1.1)

where x is the electron coordinate. Now since k ·p theory (Kane 1982) uses zone-centre Bloch
functions as basis states, it seems reasonable to expect that the potential (1.1) would give rise
to Hamiltonian matrix elements of the form

eE · xnn′ (1.2)

where xnn′ is a matrix element of x connecting two zone-centre Bloch functions (see equation
(2.10) below). This procedure has been used by many authors, both for the construction of
effective-mass Hamiltonians (Aspnes 1975, Lommer et al 1985, 1988, Zhu and Chang 1994,
Khurgin 1994, Krebs and Voisin 1996, Khurgin and Voisin 1997, 1998) and for the calculation
of interband optical transition rates (Khurgin (1988); Wang (1989), p 603; Weisbuch and
Vinter (1991), p 58; Singh (1993), p 154; Haug and Koch (1994), p 71; Chuang (1995), p 355;
Szmulowicz (1995); Fiore et al (1995); Rosencher et al (1996); Khurgin (1999)).

The difficulty with this procedure is that the matrix element xnn′ is ill defined (Burt 1993).
The nature of the problem is illustrated in figure 1, which shows that the dipole moment of a
unit cell is not independent of the choice of unit cell (Ashcroft and Mermin (1976), p 554).
In an infinite lattice, this choice is completely arbitrary; hence, the matrix elements xnn′ are
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Figure 1. A portion of an infinite lattice of point charges, showing two possible choices of unit
cell. If the magnitude of each charge is q, the dipole moment of the cell indicated by the solid lines
is +qd1, whereas that of the cell indicated by the dashed lines is −qd2.

physically meaningless. This problem is well known in the theory of polarization (Martin
1974, Tagantsev 1987, 1991, Resta 1994). A more detailed discussion of the dipole matrix
element is presented in section 2.

The source of this problem is that, although zone-centre Bloch functions are complete with
respect to periodic functions (Luttinger and Kohn 1955), they cannot represent non-periodic
functions such as x. The situation is identical to that found in Fourier representation theory:
although a Fourier integral can represent a non-periodic function, a Fourier series cannot. The
solution to this problem is clear: to represent the coordinate x, one must use a complete basis
such as the Bloch (Adams 1953, Blount 1962) or Luttinger–Kohn (1955) representation.

The properties of x in the Bloch representation are examined in section 3. The main
focus of this section is a difficulty that was mentioned frequently in the early literature but is
appreciated less widely today. Namely, the matrix elements of x in the Bloch representation
are singular functions of k at a degeneracy. This means that the Bloch representation is not
well suited for the study of degenerate bands in an electric field.

The Luttinger–Kohn representation, on the other hand, is ideal for this problem because
its basis states are analytic in k everywhere, including at degeneracies. The bulk of this
paper consists of a study of the Luttinger–Kohn representation in sections 4 and 5. An
apparent oversight in Luttinger and Kohn’s (1955) analysis of the coordinate operator, recently
discovered by Burt (1999), is discussed in section 4. Section 5 presents a derivation of
the effective-mass Hamiltonian for degenerate or quasi-degenerate bands in an electric field
(Foreman 2000b).

The results derived in this paper are discussed and compared with other approaches in the
literature in section 6. Section 7 provides a summary of the main conclusions.

2. The dipole matrix element of a unit cell

As mentioned previously, the dipole matrix element of a unit cell does not provide a suitable
means for defining a Hamiltonian because it is inherently arbitrary. This topic is explored
below, beginning with a definition of the fundamental quantities in k · p theory (Luttinger and
Kohn 1955, Blount 1962, Kane 1982).

The Pauli Hamiltonian for an electron in an ideal periodic crystal is

H0 = p2

2m
+ V (x) +

h̄

4m2c2
(σ × ∇V ) · p. (2.1)

Here p = −ih̄∇ is the canonical momentum operator, m is the mass of a free electron, V is
the potential energy (V (x) = V (x + R), where R is a Bravais lattice vector), c is the speed
of light, and the components of σ are the Pauli spin matrices. In addition to the canonical
momentum p, it is convenient to define the kinematic (or mechanical) momentum π as follows:

π ≡ m

ih̄
[x, H0] = p +

h̄

4mc2
(σ × ∇V ). (2.2)
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The eigenfunctions of H0 are the Bloch functions ψnk(x):

H0ψnk(x) = En(k)ψnk(x) (2.3)

in which

ψnk(x) = (2π)−3/2eik·xunk(x). (2.4)

Here k is the crystal momentum, n labels the independent solutions of (2.3), En(k) is the
energy eigenvalue, and unk(x) = unk(x + R) is periodic. Both ψnk and unk are spinors. The
latter are normalized over the volume of any unit cell � (not necessarily a primitive cell):

1

�

∫
�

u
†
nk(x)un′k(x) d3x = δnn′ (2.5)

and they satisfy the eigenvalue equation (Blount 1962)

H0(k)unk(x) = En(k)unk(x) (2.6)

in which

H0(k) = e−ik·xH0eik·x = H0 +
h̄

m
k · π +

h̄2k2

2m
(2.7)

is the k · p Hamiltonian. In k · p theory, one defines matrix elements of momentum as follows
(Luttinger and Kohn 1955):

pnn′(k) = (2π)3

�

∫
�

ψ
†
nk(x)pψn′k(x) d3x = 1

�

∫
�

u
†
nk(x)pun′k(x) d3x + h̄kδnn′ (2.8)

πnn′(k) = 1

�

∫
�

u
†
nk(x)πun′k(x) d3x + h̄kδnn′ . (2.9)

For consistency, the coordinate matrix element must be defined likewise:

xnn′(k) = 1

�

∫
�

u
†
nk(x)xun′k(x) d3x. (2.10)

It should be apparent after a moment’s reflection that equation (2.10) depends on the
choice of unit cell �, because x is not a periodic function. For example, consider the following
pseudopotential wave functions (Yu and Cardona 1997, Foreman 1998) for the �15 valence-
band states in a zinc-blende crystal:

uX0 =
√

8

(
α sin

2πx

a
cos

2πy

a
cos

2πz

a
+ β cos

2πx

a
sin

2πy

a
sin

2πz

a
+
γ

2
sin

4πx

a

)
(2.11)

uY0 =
√

8

(
α cos

2πx

a
sin

2πy

a
cos

2πz

a
+ β sin

2πx

a
cos

2πy

a
sin

2πz

a
+
γ

2
sin

4πy

a

)
.

(2.12)

Here a is the lattice parameter, and the coefficients α, β, and γ are real, with α2 +β2 +γ 2 = 1.
These three coefficients are the dominant terms in the �15 valence-band wave function (for
example, in GaAs, the complete wave function has α2 + β2 + γ 2 � 0.96 (Foreman 1998)). If
the unit cell is chosen to be a conventional cube of volume a3 centred on the point (x0, y0, z0),
the coordinate matrix element (2.10) is easily shown to be

xXY (0) = −ẑαβ
a

2π
cos

4πz0

a
. (2.13)

Thus, the matrix element xnn′(k) is meaningless, since it depends essentially on the location
of the unit cell, which is arbitrary.
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Most authors, however, do not attempt to evaluate xnn′(k) directly from the definition
(2.10). Instead, they invoke the well-known textbook relationship (Shankar (1994), p 503)
between the matrix elements of coordinate and momentum:

xnn′(k)
?= h̄

im

πnn′(k)

En(k) − En′(k)
. (2.14)

The difficulty with this approach is that equation (2.14) cannot possibly be valid, since the
left-hand side depends on the choice of unit cell �, whereas the right-hand side is independent
of this choice (Burt 1993). The correct relation for the matrix elements of the cell-periodic
functions unk(x) is (Yafet 1957)

πnn′(k) = im

h̄
[En(k) − En′(k)]xnn′(k) +

m

�

∫
S

x[n̂ · jnn′(k,x)] dS (2.15)

where n̂ is the outward normal to the surface S enclosing the volume �, and

jnn′(k,x) = 1

2m
{u†

nk[(π + h̄k)un′k] + [(π + h̄k)unk]†un′k} (2.16)

is a generalized current density. Equation (2.15) is derived from Green’s theorem and the
commutator (2.2). In the textbook derivation, one implicitly assumes that the current goes to
zero sufficiently rapidly at infinity for the surface integral to vanish. This assumption does not
hold for the periodic wave functions considered here. Note that both terms on the right-hand
side of (2.15) are cell-dependent quantities; only their sum is cell independent. Equation (2.15)
is thus the direct analogue of the expression given by Martin (1974) for the polarization of a
unit cell.

The dipole matrix element of a unit cell is sometimes introduced as the starting point of
a calculation, but it is also often introduced as a quantity derived from a more fundamental
calculation of the dipole matrix element of a macroscopic crystal. The transition from the
macroscopic crystal to the unit cell is achieved via a theorem that is presented in virtually
all textbooks on semiconductor physics (see, for example, Bastard (1988), p 54; Weisbuch
and Vinter (1991), p 58; Corzine et al (1993), p 30; Chuang (1995), p 353). The theorem
is applicable to integrals of the form

∫
A(x)B(x) d3x, where B(x) is a periodic function.

It states that if the function A(x) is ‘slowly varying’—a vaguely defined concept—then, to
some undefined degree of approximation, one can express this integral as a product of two
integrals; i.e., ∫

A(x)B(x) d3x =
[∫

A(x) d3x

] [
1

�

∫
�

B(x) d3x

]
. (2.17)

This theorem may be developed in more precise terms by working with the Fourier
representations of A and B:

A(x) = (2π)−3/2
∫

A(q)eiq·x d3q

A(q) = (2π)−3/2
∫

A(x)e−iq·x d3x

(2.18)

B(x) =
∑
G

BGeiG·x

BG = 1

�

∫
�

B(x)e−iG·x d3x

(2.19)
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where G is a reciprocal-lattice vector. The integral on the left-hand side of (2.17) takes a
particularly simple form in reciprocal space:∫

A(x)B(x) d3x =
∑
G

∫
A(x)BGeiG·x d3x = (2π)3/2

∑
G

A(−G)BG (2.20)

which is just a special case of Parseval’s theorem. As a corollary to (2.20), if A(x) happens to
be slowly varying in the sense that A(G) = 0 for all G �= 0, then the textbook theorem (2.17)
is exact.

This derivation of (2.17) emphasizes the fundamental importance of B(x) being periodic
(if it is not periodic, it does not possess a Fourier series). The significance of this criterion is
sometimes forgotten, and B(x) is viewed as ‘rapidly varying’ rather than periodic. This has
led some authors (Khurgin (1988); Wang (1989), p 603; Weisbuch and Vinter (1991), p 58;
Rosencher et al (1996); Krebs and Voisin (1996)) to include the potential energy eE · x in
B(x), since if u†

nk(x)un′k(x) is ‘rapidly varying,’ xu†
nk(x)un′k(x) is also. However, it is not

periodic; therefore, terms such as eE · x can only appear in A(x). With this restriction, the
meaningless quantity xnn′(k) does not arise in applications of theorem (2.20).

3. The Bloch representation

The reason why xnn′(k) is not physically meaningful is that the cell-periodic functions unk(x)

do not form a basis for non-periodic functions such as x. For any given k, the set {unk(x)}
is complete with respect to cell-periodic functions (Luttinger and Kohn (1955); see equation
(4.5) below), but x lies outside this function space. The Bloch functions ψnk(x), on the other
hand, form a complete set even for non-periodic functions. This section reviews the properties
of x in the Bloch representation, paying particular attention to the behaviour near a degeneracy.

3.1. Matrix elements of the coordinate operator

For wave vectors inside the first Brillouin zone, the set {ψnk(x)} is orthonormal:∫
ψ

†
nk(x)ψn′k′(x) d3x =

∑
G

δ(k − k′ + G)δnn′ . (3.1)

This may be derived from Parseval’s theorem (2.20), the orthogonality relation (2.5), and the
periodicity condition ψnk(x) = ψn,k+G(x). If one takes the gradient of equation (3.1) with
respect to k or k′, one obtains the following expression for the matrix elements of x (Jones
and Zener 1934, Adams 1953, Blount 1962, Lax 1974, Lifshitz and Pitaevskiı̆ 1980):∫

ψ
†
nk(x)xψn′k′(x) d3x =

∑
G

[i ∇kδ(k − k′ + G)δnn′ + ξnn′(k)δ(k − k′ + G)]. (3.2)

Here

ξnn′(k) = 1

�

∫
�

u
†
nk(x)[i ∇kun′k(x)] d3x (3.3)

is a matrix element of the ‘crystal coordinate’ operator ξ ≡ i ∇k (Adams 1953) connecting
two cell-periodic functions. The sum over G in equation (3.2) is customarily omitted (i.e.,
only the G = 0 term is retained). However, it is shown in section 4.4 that this sum is necessary
for a correct treatment of points in the immediate vicinity of the Brillouin zone boundary.

The first term in equation (3.2) is the crystal coordinate operator, which is diagonal in
the band index n; this is the only term retained in the usual ‘effective-mass’ approximation.
The matrix ξnn′(k) describes the interband mixing generated by x, which is neglected in the
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effective-mass approximation. It should be emphasized at the outset that the crystal coordinate
matrix (3.3) is qualitatively different from the coordinate matrix (2.10) (Yafet (1957); Blount
(1962), p 317; Zak (1991)), since (3.3) is independent of the choice of unit cell. In fact, ξnn′(k)

has many of the properties one might naively expect xnn′(k) to have.
The matrix ξnn′(k) is Hermitian, as can be seen by applying the operator ξ to the

orthogonality relation (2.5), which gives

ξnn′(k) = ξ∗
n′n(k). (3.4)

It is also periodic: ξnn′(k) = ξnn′(k + G). This follows from the periodicity of ψnk, which
may be expressed as un,k+G(x) = e−iG·xunk(x). The relation between ξnn′(k) and πnn′(k)

can be found by applying ξ to the equation

1

�

∫
�

u
†
nk(x)H0(k)un′k(x) d3x = En(k)δnn′ (3.5)

where H0(k) is defined in (2.7). This gives

πnn′(k) =
{
(m/h̄)∇kEn(k) n = n′

(im/h̄)[En(k) − En′(k)]ξnn′(k) n �= n′ .
(3.6)

Hence, for En(k) �= En′(k), we have (Adams 1952)

ξnn′(k) = h̄

im

πnn′(k)

En(k) − En′(k)
(3.7)

which is identical in form to the invalid relation (2.14). Comparing equations (3.7) and (2.15),
we see that ξnn′(k) − xnn′(k) is proportional to the surface integral in equation (2.15) (Yafet
1957). There is in general no choice of unit cell such that ξnn′(k) = xnn′(k) (Blount (1962),
p 317; Martin (1974)).

3.2. Singularities in ξnn′(k) at a degeneracy

It is now apparent that many of the difficulties encountered in section 2 can be resolved simply
by working in the Bloch representation and replacing xnn′(k) with ξnn′(k). However, there
is a disturbing aspect to equation (3.7): in the limit as k approaches a degeneracy, if πnn′(k)

does not tend to zero, or if En(k) approaches En′(k) faster than πnn′(k) tends to zero, then
ξnn′(k) will approach infinity.

The question of whether such singularities actually occur can be answered by returning
to the definition (3.3) of ξnn′(k), which involves ∇kunk. Since eik·x is an entire function of
k, the analytical properties of unk (as a function of k) are the same as those of ψnk. This
means that unk is not analytic in k, since it has been proven that Bloch functions are always
discontinuous in k at a degeneracy (Zak 1985). To be specific, for a degeneracy at k = k0, the
Bloch functions depend critically on the direction of κ ≡ k−k0, and may differ for arbitrarily
small values of κ in different directions (Bir and Pikus (1974), p 155).

Thus, from equation (3.3) we see that ξnn′(k) is always singular at a degeneracy. As shown
by Blount (Blount (1962), p 331), the singularity occurs in the transverse (ξ ⊥ k) components
of ξnn′(k), which vary as κ−1 in the neighbourhood of the degeneracy. The longitudinal
components (ξ ‖ k) remain finite, however, because Bloch functions are continuous functions
of κ along any fixed direction of κ (Bir and Pikus (1974), pp 157–8).

As a specific example, consider the following effective-mass Hamiltonian for the �15

valence electrons in a zinc-blende crystal (Shockley 1950, Dresselhaus et al 1955), which is
derived below in section 5:
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H =
Lk2

x + M(k2
y + k2

z ) Nkxky Nkxkz

Nkxky Lk2
y + M(k2

x + k2
z ) Nkykz

Nkxkz Nkykz Lk2
z + M(k2

x + k2
y)



+

 0 iG(k2
x − k2

y)kz iG(k2
x − k2

z )ky

iG(k2
y − k2

x)kz 0 iG(k2
y − k2

z )kx

iG(k2
z − k2

x)ky iG(k2
z − k2

y)kx 0

 . (3.8)

Here L, M , N , and G are real constants. The basis functions for this Hamiltonian are ‘pseudo-
Bloch’ functions (Kittel and Mitchell 1954, Dresselhaus et al 1955) constructed from linear
combinations of zone-centre Bloch functions; the linear combination is chosen such that it
diagonalizes the k · p coupling (to first order in k) between the given �15 states and all other
� states of different energy. A precise definition of the pseudo-Bloch basis states is given
in section 5. At present all one needs to know is that these functions are analytic in k by
construction, so they do not contribute to the above-mentioned singularities in ξnn′(k). In the
limit as k approaches zero—from any direction—the pseudo-Bloch functions approach the
zone-centre Bloch functions un0 given in equations (2.11) and (2.12), where n = X, Y , or Z.

To find the actual Bloch functions ψnk, one must diagonalize the Hamiltonian (3.8). The
first example treated here is a calculation of the z-component of ξnn′(k) for the transverse case
k = (kx, 0, 0). To calculate the gradient in equation (3.3), one must find the eigenfunctions of
(3.8) for k = (kx, 0, kz), where kz is infinitesimal. It is easily verified that to first order in kz,
these eigenfunctions are

uXk =


1

−iGk2
xkz

(L − M)k2
x

Nkxkz

(L − M)k2
x

 uYk =


−iGk2

xkz

(L − M)k2
x

1
0

 uZk =


−Nkxkz

(L − M)k2
x

0
1

 . (3.9)

Substituting these expressions into equation (3.3), one finds that

ξzXY (kx, 0, 0) = G

L − M
+ O(k2

x) (3.10)

ξzXZ(kx, 0, 0) = − iN

(L − M)kx
+ O(kx) (3.11)

with all other matrix elements zero. As expected, the transverse part of the crystal coordinate
matrix contains elements diverging as k−1.

The longitudinal components are somewhat easier to calculate, especially along the ,

axes. For example, if k = (0, 0, kz), all off-diagonal terms in the Hamiltonian (3.8) vanish.
Indeed, from the symmetry of the wave functions on the , axis (Parmenter 1955), one can
see that the off-diagonal elements vanish to any order in k. Hence, ξznn′(0, 0, kz) = 0 to
within terms of order k0

z . To determine the order of the leading corrections, one can use k · p

perturbation theory to find the cell-periodic functions unk. For example, from the symmetry
properties of the momentum matrix (Parmenter 1955, Dresselhaus 1955) we know that uXk

and uYk contain terms proportional to k2
z uX′0 and kzuX′0, respectively, where X′ refers to a �15

conduction-band state. Therefore

ξzXY (0, 0, kz) = O(k2
z ). (3.12)

The other off-diagonal matrix elements are forbidden by symmetry to any order in kz (Parmenter
1955):

ξzXZ(0, 0, kz) = ξzYZ(0, 0, kz) = 0 (3.13)
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but the diagonal elements are not:

ξznn(0, 0, kz) = O(kz) (3.14)

where n = X, Y , or Z. Equation (3.14) assumes that the Bloch functions are given by the
standard expressions of k · p perturbation theory, without any extra phase factors. One is
of course free to include an arbitrary k-dependent phase factor, in which case the diagonal
elements (3.14) are likewise arbitrary and may be set equal to any real value (Blount 1962,
Lax 1974).

The existence of singularities in ξnn′(k)means that the Bloch representation is ill suited for
the analysis of degenerate bands in external fields (Wannier (1960), appendix I; Roth (1962);
Blount (1962), p 319; Aspnes and Bottka (1972), p 501). To eliminate the singularities,
one must use basis functions that are analytic functions of k. The best-known example is
the Luttinger–Kohn representation, which was used in the construction of the pseudo-Bloch
functions mentioned above. This representation is analysed in detail below.

4. The Luttinger–Kohn representation

This section provides a review of the Luttinger–Kohn representation. The basis functions and
their properties are considered in section 4.1. Representations of the wave function, momentum
operator, and coordinate operator are treated in sections 4.2, 4.3, and 4.4, respectively. Section
4.4 focuses on an effect recently discovered by Burt (1999), in which the coordinate operator
gives rise to interband mixing at the surface of the Brillouin zone. An example illustrating this
effect is presented in section 4.5. Section 4.6 describes the Luttinger–Kohn Hamiltonian for
an electron in a uniform electric field.

4.1. Basis functions

The basis functions in the Luttinger–Kohn (LK) representation are defined by (Luttinger and
Kohn 1955, Bir and Pikus 1974)

χnk(x) = eik·xψnk0(x) = (2π)−3/2ei(k+k0)·xUn(x) (4.1)

in which Un(x) ≡ unk0(x) is the periodic part of the Bloch function (2.4) at some fixed point
k0 (usually k0 = 0). Note that the wave vector k in equation (4.1) is not the absolute crystal
momentum used in the Bloch functions (2.4); it is the crystal momentum measured relative to
k0 (which was referred to as κ in section 3).

Since Un(x) is periodic, it can be expanded in a Fourier series:

Un(x) =
∑
G

UnGeiG·x (4.2)

UnG = 1

�

∫
�

Un(x)e
−iG·x d3x (4.3)

where G is a reciprocal-lattice vector. The set {Un} is orthogonal (see equation (2.5)), and it is
complete with respect to cell-periodic functions (Luttinger and Kohn 1955, Burt 1988, 1992):

1

�

∫
�

U †
n (x)Un′(x) d3x = δnn′ (4.4)

1

�

∑
n

Un(x)U
†
n (x

′) = I
∑
R

δ(x − x′ − R) (4.5)
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where R is a Bravais lattice vector and I is the 2 × 2 unit matrix. Another way of expressing
these properties is∑

G

U
†
nGUn′G = δnn′ (4.6)∑

n

UnGU
†
nG′ = IδGG′ . (4.7)

The LK basis functions are written in Dirac notation as

χs
nk(x) = 〈sx|nk〉 (4.8)

where s is a spin index (i.e., (4.8) is one component of the spinor (4.1)), and |sx〉 is an eigenket
of spin and position. The inner product of two basis functions may be calculated from (4.2):

〈nk|n′k′〉 =
∑
s

∫
〈nk|sx〉〈sx|n′k′〉 d3x =

∑
G,G′

U
†
nGUn′G′δ(k − k′ + G − G′)

=
∑
G

Bnn′(G)δ(k − k′ + G) (4.9)

where

Bnn′(G) =
∑
G′

U
†
n,G′+GUn′G′ = 1

�

∫
�

U †
n (x)Un′(x)eiG·x d3x. (4.10)

If k and k′ lie inside the same primitive unit cell in reciprocal space, then k −k′ is never equal
to a non-zero reciprocal-lattice vector. In this case

δ(k − k′ + G) = δ(k − k′)δG,0 (4.11)

and equation (4.9) reduces to

〈nk|n′k′〉 = δnn′δ(k − k′). (4.12)

Basis functions from the same unit cell are therefore orthogonal. One can show likewise that
they are complete:∑

n

∫
�∗

〈sx|nk〉〈nk|s ′x′〉 d3k = δss ′δ(x − x′) (4.13)

where �∗ = (2π)3/� is the volume of a primitive unit cell in reciprocal space. The shape and
location of this cell are arbitrary (although it is convenient to choose a cell symmetric about
k = 0).

4.2. The wave function

The closure property (4.13) means that one can expand any spinor wave function ϕ(x) in the
LK basis:

ϕs(x) = 〈sx|ϕ〉 =
∑
n

∫
�∗

〈sx|nk〉〈nk|ϕ〉 d3k =
∑
n

∫
�∗

χs
nk(x)ϕn(k) d3k (4.14)

where

ϕn(k) ≡ 〈nk|ϕ〉 (4.15)

is the wave function in the LK representation. One can calculate ϕn(k) from the plane-wave
expansion (4.2):

ϕn(k) =
∑
s

∫
〈nk|sx〉〈sx|ϕ〉 d3x =

∑
G

U
†
nGϕ(k + k0 + G) (4.16)
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where

ϕ(q) = (2π)−3/2
∫

ϕ(x)e−iq·x d3x (4.17)

is the Fourier transform of ϕ(x). Note from (4.15) and (4.16) that ϕn(k) is defined for all
values of k. However, equation (4.14) shows that only those values that are within a single
unit cell are used in constructing ϕ(x). Thus, there is a redundancy of information in ϕn(k).
To emphasize this, ϕn(k) will be referred to as the ‘extended-zone’ LK wave function†.

The inverse relation to (4.16) is obtained from (4.7):

ϕ(k + k0 + G) =
∑
n

UnGϕn(k). (4.18)

The extended-zone wave function ϕn(k) is not periodic in k, since from (4.16), (4.18), and
(4.10) we have

ϕn(k − G) =
∑
n′

Bnn′(G)ϕn′(k). (4.19)

Thus, Bnn′(G) represents the reciprocal-lattice translation operator for the extended-zone wave
function. If equation (4.19) were written in the Bloch representation, Bnn′(G) would be
replaced by δnn′ .

If one pulls Un(x)eik0·x outside the integral in (4.14), the remaining quantity

Fn(x) = (2π)−3/2
∫
�∗

ϕn(k)e
ik·x d3k (4.20)

is referred to as an envelope function. Its Fourier transform is

Fn(k) =
{
ϕn(k) k ∈ �∗

0 k /∈ �∗ .
(4.21)

The function Fn(k) is therefore the ‘reduced-zone’ LK wave function. In coordinate space,
the envelope-function representation for ϕ is (Burt 1988, 1992)

ϕ(x) = eik0·x
∑
n

Fn(x)Un(x). (4.22)

Since the set {Fn} provides complete information about the wave function, it must be possible
to express ϕn(k) in terms of Fn(k). The first step is to rewrite equation (4.19) as

ϕn(k) =
∑
n′

Bnn′(G)ϕn′(k + G). (4.23)

Then, since there is only one G such that (k + G) ∈ �∗, equation (4.23) is equivalent to

ϕn(k) =
∑
G

∑
n′

Bnn′(G)Fn′(k + G). (4.24)

This reverses the truncation performed in equation (4.21).

† This nomenclature was originally developed for the Bloch representation (Ashcroft and Mermin (1976), pp 159–
60), where it indicates a non-periodic, non-redundant depiction of the energy band structure covering all values of
k. The ‘repeated-zone’ scheme indicates a periodic, redundant depiction. The LK wave function ϕn(k) is redundant
but non-periodic (see equation (4.19)), which fits neither definition strictly. To avoid the connotation of periodicity
associated with ‘repeated-zone’, I have chosen to use the term ‘extended-zone’.
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4.3. The momentum operator

To determine the properties of the momentum operator p, it is simplest to start from the
momentum representation (4.17):

ϕs(q) = 〈sq|ϕ〉 (4.25)

in which |sq〉 is an eigenket of momentum (i.e., p|sq〉 = h̄q|sq〉); hence,

〈sq|p|ϕ〉 = h̄q〈sq|ϕ〉. (4.26)

The LK basis functions are written in the momentum representation as follows:

〈sq|nk〉 =
∑
s ′

∫
〈sq|s ′x〉〈s ′x|nk〉 d3x =

∑
G

Us
nGδ(k + k0 + G − q) (4.27)

in which 〈sq|s ′x〉 = (2π)−3/2e−iq·xδss ′ . The action of p in the LK representation is obtained
by combining equations (4.26) and (4.27):

〈nk|p|ϕ〉 =
∑
s

∫
〈nk|sq〉〈sq|p|ϕ〉 d3q =

∑
G

U
†
nGh̄(k + k0 + G)ϕ(k + k0 + G). (4.28)

One can then express this result in terms of ϕn(k) using equation (4.18):

〈nk|p|ϕ〉 =
∑
n′

[pnn′(k0) + h̄kδnn′ ]ϕn′(k) (4.29)

where

pnn′(k0) =
∑
G

U
†
nGUn′Gh̄(k0 + G) (4.30)

is the momentum matrix defined previously in equation (2.8). For the special case |ϕ〉 = |n′k′〉,
equation (4.29) reduces to

〈nk|p|n′k′〉 = [pnn′(k0) + h̄kδnn′ ]δ(k − k′). (4.31)

4.4. The coordinate operator

The action of the coordinate operator in the LK representation is simply

〈nk|x|ϕ〉 =
∑
s

∫
〈nk|sx〉x〈sx|ϕ〉 d3x = i ∇k

∑
s

∫
〈nk|sx〉〈sx|ϕ〉 d3x

= i ∇k〈nk|ϕ〉 = i ∇kϕn(k) (4.32)

which, apart from the index n, is the same as the well-known result for the momentum
representation (Merzbacher 1998). One can use equation (4.32) to obtain a variety of related
expressions, such as the product

xϕs(x) = 〈sx|x|ϕ〉 =
∑
n

∫
�∗

〈sx|nk〉〈nk|x|ϕ〉 d3k =
∑
n

∫
�∗

χs
nk(x)[i ∇kϕn(k)] d3k

(4.33)

and the matrix element

〈ϕ(i)|x|ϕ(j)〉 =
∑
n

∫
�∗

ϕ(i)∗
n (k)[i ∇kϕ

(j)
n (k)] d3k (4.34)

where i and j are labels for different states (not spin indices). Equation (4.34) is equal to the
matrix element in the momentum representation:

〈ϕ(i)|x|ϕ(j)〉 =
∫

ϕ(i)†(q)[i ∇qϕ
(j)(q)] d3q (4.35)
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as can be seen by substituting (4.16) into (4.34), then using the completeness relation (4.7).
The matrix element of x connecting two basis functions is just equation (4.32) for the

special case |ϕ〉 = |n′k′〉:
〈nk|x|n′k′〉 = i ∇k〈nk|n′k′〉. (4.36)

It is often assumed, both in the original literature (Luttinger and Kohn 1955, Kjeldaas and
Kohn 1957) and in textbooks (Callaway 1991), that equation (4.36) is equivalent to

〈nk|x|n′k′〉 = i ∇kδ(k − k′)δnn′ . (4.37)

However, to evaluate the gradient in (4.36), one must (in general) make use of k-values lying
outside the cell �∗. Consequently, the orthogonality relation (4.12) is not valid in (4.36); one
should instead use equation (4.9), which gives

〈nk|x|n′k′〉 = i
∑
G

Bnn′(G)∇kδ(k − k′ + G). (4.38)

Hence, the coordinate operator in the LK representation does give rise to interband mixing,
albeit only at the surfaces of the unit cell �∗. This was first discovered by Burt (1999)†.

There is a subtlety here, however, because the mixing is not obvious from equations (4.33)
and (4.34), which have no terms off-diagonal in n. Indeed, equations (4.33) and (4.34) look
as if they should be consistent with the matrix element (4.37) and inconsistent with (4.38). To
show that the truth is in fact just the opposite, one can insert the matrix elements (4.37) and
(4.38) into the integral

〈ϕ(i)|x|ϕ(j)〉 =
∑
n,n′

∫
�∗

∫
�∗

〈ϕ(i)|nk〉〈nk|x|n′k′〉〈n′k′|ϕ(j)〉 d3k d3k′ (4.39)

and compare the results with equation (4.34). In either case, the integral over k′ is evaluated
using the identity∫

�∗
δ(k − k′)ϕn(k′) d3k′ = Fn(k) (4.40)

where Fn(k) is the reduced-zone wave function. Equation (4.37) therefore yields

〈ϕ(i)|x|ϕ(j)〉 =
∑
n

∫
F (i)∗
n (k)[i ∇kF

(j)
n (k)] d3k. (4.41)

This expression disagrees with the correct result (4.34) because, at the surface of �∗, Fn(k)

drops abruptly to zero, whereas ϕn(k) does not (cf. equations (4.16) and (4.21)). The gradient
in equation (4.41) therefore generates a surface δ-function with a magnitude different from that
in (4.34). For example, if ϕ(q) is continuous, then ϕn(k) is also, and the surface δ-function is
zero for equation (4.34) but non-zero for equation (4.41). To illustrate further this discrepancy,
an explicit numerical comparison between (4.34) and (4.41) is presented below in section 4.5.

If one inserts the matrix element (4.38) into equation (4.39), one finds instead

〈ϕ(i)|x|ϕ(j)〉 =
∑
G

∑
n,n′

Bnn′(G)

∫
F (i)∗
n (k)[i ∇kF

(j)

n′ (k + G)] d3k. (4.42)

The sum in (4.42) covers all G, but the only non-zero Gs that contribute are those that connect
two surfaces of the cell�∗. The sums over G and n′ can be evaluated using equation (4.24); this

† Although Burt was the first to give an explicit description of this effect, Kohn was undoubtedly aware of its existence
as early as 1959. Consider the following statement: ‘Two courses of action suggest themselves: One is to hold fast to
the basis of Luttinger and Kohn and consider very carefully what happens when k is on the Brillouin zone boundary.
This procedure we found not tractable.’ (Kohn (1959), p 1462).
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yields precisely the result found earlier in equation (4.34). Equation (4.42) is also equivalent
to the expression derived by Burt (Burt (1999), equation (6.12)).

Thus, we see that the interband mixing found in equation (4.38) is manifest in expressions
such as (4.42) involving the reduced-zone wave function, but hidden in expressions such as
(4.34) involving the extended-zone wave function. I say ‘hidden’ rather than ‘non-existent’
because calculation of the gradient in (4.34) requires knowledge of ϕn(k) for k-values lying
outside the cell �∗. This information is redundant and can be expressed in terms of k-values
inside �∗ through the use of equation (4.19). But this procedure merely replicates the reduced-
zone expression (4.42).

In the Bloch representation, the equations corresponding to (4.34) and (4.42) have the same
form as that shown here, except that Bnn′(G) is replaced by δnn′ , and there is an additional
integral containing ξnn′(k).

Further discussion of the coordinate operator (using the method of Blount (1962)) is
presented in appendix A, including a proof that the integrals (4.14) and (4.33) are independent
of the choice of unit cell �∗.

4.5. Example of zone-boundary mixing effects

The validity of equations (4.34), (4.41), and (4.42) is tested here for a simple example, which
also serves to emphasize the care that must be taken in dealing with the surface of the cell �∗.
The reference crystal in this example is a one-dimensional spin-zero ‘empty lattice’ of period
a, for which the zone-centre Bloch functions are just the plane waves Un(x) = exp(i 2πnx/a),
where n is an integer. The associated Fourier coefficients areUnG = δnG, whereG is measured
in units of 2π/a. The wave function in the extended-zone LK representation (equation (4.16))
is therefore ϕn(k) = ϕ(k + 2πn/a).

The problem to be treated here involves two states |ϕ(0)〉 and |ϕ(1)〉, which are given in the
coordinate, momentum, extended-zone, and reduced-zone representations by

ϕ(0)(x) =
√

2π sin(πx/a)/πx

ϕ(0)(q) = Z(q)

ϕ(0)
n (k) = Z(k + 2πn/a)

F (0)
n (k) = δn0Z(k)

(4.43)

and

ϕ(1)(x) =
√

2πei 2πx/a sin(πx/a)/πx

ϕ(1)(q) = Z(q − 2π/a)

ϕ(1)
n (k) = Z(k + 2π(n − 1)/a)

F (1)
n (k) = δn1Z(k)

(4.44)

in which

Z(k) =
{

1 |k| < π/a

0 |k| > π/a
(4.45)

is a function defining the boundaries of the first Brillouin zone (which is chosen to coincide
with �∗).

In the coordinate representation, the matrix element of x can be calculated using
trigonometric identities and the integral

∫ ∞
−∞ x−1 sin x dx = π ; the result is

〈ϕ(0)|x|ϕ(1)〉 = i/2. (4.46)
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For the momentum representation, one inserts the derivative of ϕ(1)(q):

dϕ(1)/dq = δ(q − π/a) − δ(q − 3π/a) (4.47)

into equation (4.35), which yields the same result (4.46). This calculation uses the identity∫
f (x)δ(x) dx = 1

2

[
lim
x→0−

f (x) + lim
x→0+

f (x)

]
(4.48)

which follows from the definition of the generalized integral (4.48) as the limit of a sequence of
ordinary integrals (Gelfand and Shilov 1964). Here f (x) is assumed to be a bounded function
with a finite number of discontinuities. Note that (4.48) does not depend on the value of f (x)
at x = 0.

In the extended-zone LK representation, the only non-zero contribution to equation (4.34)
comes from n = 0 (since Z(k)Z(k + G) = δG,0Z(k)). The derivative of ϕ(1)

0 (k) is

dϕ(1)
0 /dk = δ(k − π/a) − δ(k − 3π/a) (4.49)

which, when inserted into (4.34), gives the result (4.46) found above. However, for the case
of equation (4.41), the reduced-zone wave functions (4.43) and (4.44) have different values of
n, yielding a matrix element

〈ϕ(0)|x|ϕ(1)〉 = 0 (4.50)

which is clearly incorrect. The matrix element in the reduced-zone representation should
instead be calculated using (4.42), where Bnn′(G) = δn,n′+G. Since the reduced-zone wave
functions have n = 0 and n′ = 1, this requires G = −2π/a. The derivative appearing in
(4.42) is then

d

dk
F

(1)
1 (k − 2π/a) = δ(k − π/a) − δ(k − 3π/a) (4.51)

which gives the matrix element (4.46) once again.
Hence, this example reinforces the conclusion that equations (4.34) and (4.42) are the

correct expressions to use for calculating the matrix element of x in the LK representation.
The calculation is simpler if xϕ(x) is square integrable (Blount 1962), for this ensures thatϕ(q)
and ϕn(k) are continuous, and consequently that no δ-functions arise in equation (4.34). In
this case one can get the right answer even from equation (4.41), provided that one deliberately
omits all zone-boundary effects.

However, as Burt (1999) has emphasized, such an approach only works for the complete
wave function. Even if xϕ(x) is square integrable, the individual terms in the envelope-function
expansion (4.22) generally do not have this property. Consequently, there is considerable
danger of error if one chooses to approximate the wave function by one term in expansion
(4.22). This is discussed at length by Burt (1993, 1995a, b, 1999) and Coles et al (1999).

4.6. The Hamiltonian

With the results derived in sections 4.1–4.4, we are now in a position to evaluate the Luttinger–
Kohn Hamiltonian for an electron in a uniform electric field. The Pauli Hamiltonian for this
case is

H = H0 + U + W (4.52)

where H0 is the periodic Hamiltonian defined in (2.1), U is the potential energy of the field
defined in (1.1), and

W = eh̄

4m2c2
E · (p × σ). (4.53)
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Taking note of equations (2.3) and (2.7), the matrix elements of H0 are

〈nk|H0|n′k′〉 =
[(

En +
h̄2k2

2m

)
δnn′ +

h̄

m
k · πnn′

]
δ(k − k′) (4.54)

in which En ≡ En(k0) and πnn′ ≡ πnn′(k0). The matrix elements of U are obtained from
equation (4.38):

〈nk|U |n′k′〉 = ieE · ∇k

∑
G

Bnn′(G)δ(k − k′ + G). (4.55)

Finally, the matrix elements of W are

〈nk|W |n′k′〉 = eh̄

4m2c2
[E · (p × σ)nn′ + (E × h̄k) · σnn′ ]δ(k − k′) (4.56)

where the matrix elements (p×σ)nn′ and σnn′ are evaluated at k0 according to the prescription
given in equation (2.8).

5. Elimination of interband coupling in the Luttinger–Kohn Hamiltonian

In the Hamiltonian derived above, states of different energy are coupled at k �= 0 by the k · p

interaction. Therefore, this Hamiltonian is directly useful only for numerical work. However,
one often needs an accurate solution only within a small region near k = 0. In such cases,
one can derive an approximate ‘effective-mass’ Hamiltonian by treating the k · p interaction
and the field-induced interband coupling as small perturbations. This is done below using the
unitary-transformation technique of Luttinger and Kohn (1955).

Since effective-mass theory is not valid near the zone boundary, one is justified in
neglecting the G �= 0 terms in the potential energy (4.55). This means that all operators
A of interest have matrix elements of the form

〈nk|A|n′k′〉 = 〈n|A|n′〉δ(k − k′) (5.1)

where 〈n|A|n′〉 is a k-dependent operator†. Thus, for brevity, I shall give only 〈n|A|n′〉 in the
equations that follow.

The physical system of primary interest is a set of states that are degenerate or quasi-
degenerate in energy at the point k0. ‘Quasi-degenerate’ refers to states that lie close
together in energy (En ≈ En′ ), such as the conduction and valence bands of a narrow-gap
semiconductor (Kane 1957). With this in mind, the crystal Hamiltonian (4.54) may be written
as H0 = H(0) + H(1) + H(2), where

〈n|H(0)|n′〉 =
(
En +

h̄2k2

2m

)
δnn′ (5.2)

〈n|H(1)|n′〉 = h̄

m
kαπ

α
nn′8nn′ (5.3)

〈n|H(2)|n′〉 = h̄

m
kαπ

α
nn′,nn′ . (5.4)

Here a summation over the Cartesian components α is implied, and

,nn′ =
{

1 En ≈ En′

0 otherwise
(5.5)

† In this expression, n and n′ are merely labels, and the quantity |n〉 has no independent meaning as a Dirac ket vector.
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with 8nn′ = 1 − ,nn′ . The contributions from the electric field are U and W = W(0) + W(1),
where

〈n|U |n′〉 = ieE · ∇kδnn′ (5.6)

〈n|W(0)|n′〉 = eh̄

4m2c2
E · (p × σ)nn′ (5.7)

〈n|W(1)|n′〉 = eh̄2

4m2c2
(E × k) · σnn′ . (5.8)

The idea of the unitary-transformation technique is to replace the LK basis kets |nk〉 with
a new basis, say |nk〉, in which the Hamiltonian for each quasi-degenerate set of states is
decoupled from all other states to any specified order in the small parameters k and E . This
effectively reduces the Hamiltonian to block-diagonal form. In what follows, I shall use this
technique to eliminate all† off-block-diagonal terms (i.e., terms proportional to 8nn′ ) of the
first order in k and E ; this yields a decoupled Hamiltonian that is valid through terms of order
k3, kE , and E2 inclusive. Kohn (1959) has shown for the magnetic-field problem that this
procedure can be extended to arbitrary order.

The new basis kets |nk〉 are related to the old basis kets |nk〉 by a unitary operator eS :

|nk〉 = eS |nk〉 (5.9)

in which S = −S† is determined below. The matrix elements of H in the new basis are equal
to the matrix elements of

H̄ = e−SHeS = H + [H, S] +
1

2!
[[H, S], S] +

1

3!
[[[H, S], S], S] + · · · (5.10)

in the old basis. Putting in the explicit form of H , one has

H̄ = H(0) + H(1) + H(2) + U + W + [H(0), S] + [H(1), S] + [H(2), S] + [U, S]

+ 1
2 [[H(0), S], S] + 1

2 [[H(1), S], S] + 1
2 [[H(2), S], S] + 1

2 [[U, S], S]

+ 1
6 [[[H(0), S], S], S] (5.11)

which includes all terms of order k3, kE , and E2 (except those arising from [W,S]), but neglects
higher-order terms such as k2E .

The first task is to eliminate the off-block-diagonal couplingH(1). This is done by choosing
S such that H(1) + [H(0), S] = 0, which implies that (Luttinger and Kohn 1955)

〈n|S|n′〉 = −kαπ
α
nn′

mωnn′
8nn′ = −ikαξ

α
nn′8nn′ (5.12)

where h̄ωnn′ = En − En′ , and equation (3.7) was used in the last step. With this choice of S,
the Hamiltonian H̄ becomes

H̄ = H(0) + H(2) + 1
2 [H(1), S] + 1

3 [[H(1), S], S] + 1
2 [[H(2), S], S]

+ U + W + [U, S] + 1
2 [[U, S], S]. (5.13)

The term [H(2), S] appearing in equation (5.11) has been discarded because its matrix elements
are all off-block-diagonal terms of order k2. The term 1

2 [H(1), S] is just the usual effective-mass
correction arising from the k · p interaction:

1
2 〈n|[H(1), S]|n′〉 = h̄kαkβ

2m2

∑
i

′
πα
niπ

β

in′(ω
−1
ni + ω−1

n′i ). (5.14)

† The term W represents a special case. It is relativistic in origin, so its contribution is considerably smaller than
the other (non-relativistic) terms proportional to E . For this reason, the off-block-diagonal matrix elements of W are
ignored here.
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For example, for the triply degenerate �15 valence-band states in a zinc-blende crystal, the
matrix (5.14) has the form shown previously in equation (3.8). Note that the ‘pseudo-Bloch’
basis states discussed in section 3 are just the states |nk〉 defined in equations (5.9) and (5.12).

A simple estimate of the effective-mass parameters L, M , and N in equation (3.8) may
be obtained from a three-band model (Cardona et al 1988, Zhu and Chang 1994) that neglects
all states outside the �15 valence (X, Y , Z), �1 conduction (S), and �15 conduction (X′,
Y ′, Z′) bands. The momentum matrix elements connecting these states are P = (h̄/im)px

SX,
P ′ = (h̄/im)px

SX′ , andQ = (h̄/im)p
y

X′Z , and the corresponding energy gaps areE0 = ES−EX

and E′
0 = EX′ − EX. Within this model one has

L = h̄2/2m − P 2/E0

M = h̄2/2m − Q2/E′
0

N = −(P 2/E0 + Q2/E′
0).

The operator 1
3 [[H(1), S], S] gives rise to terms of order k3 in the Hamiltonian:

1
3 〈n|[[H(1), S], S]|n′〉 = − h̄

3m
kαkβkγ

∑
i,j

′
(πα

niξ
β

ij ξ
γ

jn′ − 2ξαniπ
β

ij ξ
γ

jn′ + ξαniξ
β

ijπ
γ

jn′). (5.15)

The matrix representing this operator for the �15 valence states X, Y , and Z was shown above
in equation (3.8). In the three-band model, the constant G in (3.8) is given by

G = 2PP ′Q/E0E
′
0.

The operator 1
2 [[H(2), S], S] is also of order k3. However, in the absence of spin–orbit

coupling, H(2) vanishes at the � point of a zinc-blende crystal (Dresselhaus 1955). This term
is therefore relativistically small in comparison to 1

3 [[H(1), S], S], and it will not be considered
further here.

In conventional effective-mass theory, the field-dependent terms [U, S] and 1
2 [[U, S], S]

are neglected (Luttinger and Kohn 1955). Here they are retained, since they represent the
lowest-order band-mixing effects arising from an electric field. From (5.6) and (5.12), one has

〈n|[U, S]|n′〉 = eEαξ
α
nn′8nn′ . (5.16)

Equation (5.16) has the form of a dipole interaction, but the factor8nn′ prohibits the occurrence
of any such interaction between degenerate or quasi-degenerate states. Hence, the singularities
discussed in section 3.2 do not arise in the Luttinger–Kohn effective-mass Hamiltonian (because
the pseudo-Bloch basis states |nk〉 are analytic functions of k).

The last term in the Hamiltonian (5.13) is calculated from equations (5.12) and (5.16):

1
2 〈n|[[U, S], S]|n′〉 = ie

2m2
(Eαkβ − kαEβ)

∑
i

′ πα
niπ

β

in′

ωniωin′
. (5.17)

Note that the momentum matrix elements in (5.17) have the same form as those in the effective-
mass Hamiltonian (5.14). Thus, for the previous example of �15 valence electrons, the matrix
representing (5.17) has the same form as equation (3.8), but without the diagonal terms:

1
2 [[U, S], S] =

 0 in(Exky − kxEy) in(Exkz − kxEz)

in(Eykx − kyEx) 0 in(Eykz − kyEz)

in(Ezkx − kzEx) in(Ezky − kzEy) 0

 . (5.18)

Here n is a real constant that is given in the three-band model by

n = −(e/2)(P 2/E2
0 − Q2/E′2

0 ).
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The change of basis (5.9) has eliminated all off-block-diagonal terms linear in k in the
Hamiltonian (5.13), but as a by-product it has generated the linear-in-E terms shown in equation
(5.16). The next task is therefore to eliminate these terms. This is done by applying another
unitary transformation:

|n̂k〉 = eSeR|nk〉 (5.19)

yielding a new Hamiltonian Ĥ = e−RH̄eR . This approach was used in the Bloch representation
(for non-degenerate bands) by Adams (1953) and Kane (1959). The operator R in equation
(5.19) is chosen such that [U, S] + [H(0), R] = 0 (Adams 1953, Kane 1959):

〈n|R|n′〉 = ieEαπ
α
nn′

h̄mω2
nn′

8nn′ . (5.20)

The new Hamiltonian is therefore

Ĥ = H(0) + H(2) + 1
2 [H(1), S] + 1

3 [[H(1), S], S] + 1
2 [[H(2), S], S]

+ U + W + 1
2 [[U, S], S] + 1

2 [[U, S], R] (5.21)

where the identity [U,R] = 0 has been used. In addition, the term [H(2), R] was discarded
because its matrix elements are all off-block-diagonal terms of order kE . The only unknown
quantity in (5.21) is 1

2 [[U, S], R]:

1
2 〈n|[[U, S], R]|n′〉 = −e2EαEβ

2h̄m2

∑
i

′ πα
niπ

β

in′

ωniωin′
(ω−1

ni + ω−1
n′i ). (5.22)

From the structure of this equation, we see that the matrix representing (5.22) for �15 valence
electrons is again similar to the effective-mass Hamiltonian (3.8):

1
2 [[U, S], R] =

 λE2
x + µ(E2

y + E2
z) νExEy νExEz

νExEy λE2
y + µ(E2

x + E2
z) νEyEz

νExEz νEyEz λE2
z + µ(E2

x + E2
y)

 (5.23)

in which λ, µ, and ν are real constants. In the three-band model one has

λ = −e2P 2/E3
0

µ = −e2Q2/E′3
0

ν = −e2(P 2/E3
0 + Q2/E′3

0 ).

The Hamiltonian (5.21) is the Luttinger–Kohn Hamiltonian for degenerate or quasi-
degenerate bands in an electric field. It is valid through terms of order k3, kE , and E2. Notice
that there are no dipole terms in this Hamiltonian. The only place that such terms appear is
in equation (5.16), which has no matrix elements connecting two states in the same quasi-
degenerate set. This conclusion is completely general; it holds for crystals of any symmetry
and for any value of the expansion point k0.

There is, however, another possible source of matrix elements linear in E and independent
of k: the relativistic term W(0) shown in equation (5.7). The operator p × σ transforms as
a vector under rotations, has odd parity, and is invariant with respect to time reversal and
translations. Hence, (p × σ)nn′ has the same symmetry properties as the crystal coordinate
matrix ξnn′ , and one may consider W(0) to be an ‘effective’ dipole interaction even though its
physical origin is different from that of a true dipole coupling. In practical terms, the main
difference is quantitative: sinceW(0) is relativistic in origin, its magnitude is much smaller than
the non-relativistic coupling in equation (5.16). Since the latter is already a small perturbation,
one should be safe in neglecting W(0).
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Therefore, in the Luttinger–Kohn Hamiltonian, there is no non-relativistic dipole
interaction between degenerate or quasi-degenerate states. The only mechanism that can
lead to a non-relativistic coupling of order E1k0 is a lattice deformation, which gives rise to
deformation-potential terms in the Hamiltonian (Bir and Pikus 1974, Blacha et al 1984). The
theory of such effects is well established and will not be discussed further here.

In addition to the Hamiltonian, one is often interested in knowing the form of the
momentum operator, which is needed for calculating optical transition rates in the A · p

gauge. The matrix elements of p in the pseudo-Bloch bases {|nk〉} and {|n̂k〉} are the same
as the matrix elements of p̄ = e−Sp eS and p̂ = e−Rp̄ eR in the original basis {|nk〉}. To first
order in k and E , one has

p̂ = p + [ p, S] + [ p, R]. (5.24)

The matrix elements of p were given already in equation (4.31):

〈n|pα|n′〉 = pα
nn′ + h̄kαδnn′ (5.25)

while those of [ p, S] and [ p, R] may be calculated from equations (5.12) and (5.20):

〈n|[pα, S]|n′〉 = kβ

m

∑
i

′
(
pα
niπ

β

in′

ωn′i
+
π
β

nip
α
in′

ωni

)
(5.26)

〈n|[pα,R]|n′〉 = ieEβ

h̄m

∑
i

′
(
pα
niπ

β

in′

ω2
n′i

− π
β

nip
α
in′

ω2
ni

)
. (5.27)

The matrix elements of primary interest are those coupling the �1 conduction (n = S) and �15

valence (n′ = X, Y , or Z) states of a zinc-blende semiconductor with no spin–orbit coupling.
The symmetry properties of these states (Parmenter 1955, Dresselhaus 1955) can be used to
write 〈S|p̂|X〉 as

h̄

im
〈S|p̂|X〉 = x̂P + ŷ(DEz − iBkz) + ẑ(DEy − iBky) (5.28)

with 〈S|p̂|Y 〉 and 〈S|p̂|Z〉 obtained from cyclic permutations of x, y, and z. The constants in
equation (5.28) are real, and are defined by P = (h̄/im)px

SX and

B = h̄

m2

∑
i

′
p
y

Sip
z
iX(ω

−1
Xi + ω−1

Si ) (5.29)

D = e

m2

∑
i

′
p
y

Sip
z
iX(ω

−2
Xi − ω−2

Si ) (5.30)

in which the summation covers �15 states. In the three-band model one has

B = P ′Q(1/E′
0 + 1/E1)

D = eP ′Q(1/E2
1 − 1/E′2

0 )

where E1 = E′
0 − E0.

To appreciate the significance of equation (5.28), it is helpful to rewrite this expression in
terms of the rotated coordinates x ′ = (x + y)/

√
2, y ′ = (−x + y)/

√
2, and z′ = z:

h̄

im
〈S|p̂|X′〉 = x̂′(P + DEz − iBkz) + ẑ(DEx ′ − iBkx ′)

h̄

im
〈S|p̂|Y ′〉 = ŷ′(P − DEz + iBkz) − ẑ(DEy ′ − iBky ′)

h̄

im
〈S|p̂|Z〉 = ẑP + x̂′(DEx ′ − iBkx ′) − ŷ′(DEy ′ − iBky ′).

(5.31)
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These equations exhibit clearly the field-induced optical anisotropy (i.e., the Pockels effect)
mentioned in the introduction. For example, if E ‖ [001], the optical transition rate is obviously
different for light polarized along the x ′- and y ′-axes. To lowest order, the anisotropy is linear
in E . Both B and D contribute to the Pockels effect, but the contribution from B is several
orders of magnitude larger than that from D (Foreman 2000b).

6. Discussion of other models in the literature

From the discussion in section 2 it should be clear that any Hamiltonian based on the dipole
matrix element of a unit cell is fundamentally incorrect. However, in practice such a model
may or may not yield valid results, depending on the details of how it is constructed and
used. The possibility of obtaining valid results from an invalid Hamiltonian arises from a
serendipitous cancellation of errors: if one uses the invalid identity (2.14) for the matrix
elements of the coordinate operator, one obtains (accidentally) the correct relation (3.7) for the
matrix elements of the crystal coordinate in the Bloch representation. Thus, if one works in
the Bloch representation, one could in principle obtain valid predictions from a Hamiltonian
that was derived incorrectly.

However, in practice most work on semiconductors is performed using some variant of
the Luttinger–Kohn k · p or effective-mass theory. As discussed in section 5 (see equations
(5.9) and (5.19)), this formalism is based on a pseudo-Bloch representation. Although the
pseudo-Bloch functions are the same as Bloch functions for non-degenerate bands (to within a
k-dependent phase factor), they are quite different for degenerate or quasi-degenerate bands.
Consequently, one cannot expect to obtain correct results by using a Bloch coordinate matrix
in the Luttinger–Kohn theory.

For example, a number of authors have proposed k · p models in which states of different
energy are coupled simultaneously by the k ·p interaction and a dipole matrix element (Aspnes
1975, Lommer et al 1985, 1988, Zhu and Chang 1994). That this is incorrect may be seen
immediately from equations (5.3), (5.6), and (5.16). In the original Luttinger–Kohn basis
{|nk〉}, the potential energy of the field (5.6) is strictly diagonal and there are no dipole terms.
After one transforms to the pseudo-Bloch basis {|nk〉}, the k · p coupling (5.3) is eliminated
and replaced by the dipole coupling (5.16). There is no basis in which (5.3) and (5.16) appear
simultaneously.

More recently, it has been proposed that the Luttinger–Kohn Hamiltonian for degenerate
valence electrons in zinc-blende semiconductors should contain a dipole mixing term (Khurgin
1994, Krebs and Voisin 1996, Khurgin and Voisin 1997, 1998). The most detailed description
of this theory is given by Khurgin and Voisin (1997, 1998), who provide two versions of their
Hamiltonian: one that is to be used in the Luttinger–Kohn representation†, and one that is
to be used in the Bloch representation‡. The latter is obtained from the former by applying
Kane’s (1957) direction-dependent unitary transformation.

This model is derived from the dipole matrix element of a unit cell; therefore, the derivation
cannot be valid. Furthermore, as shown in section 5 (see especially the discussion below
equation (5.23)), there are no circumstances in which a non-relativistic dipole interaction
between degenerate bands exists in the Luttinger–Kohn representation (Foreman 1999,
2000a, b). Hence, the Khurgin–Voisin model is fundamentally inconsistent with the theory of
Luttinger and Kohn.

The Khurgin–Voisin model also disagrees with the known properties of the coordinate

† See equation (9) of Khurgin and Voisin (1997) and the paragraph above equation (6) of Khurgin and Voisin (1998).
‡ See equation (30) of Khurgin and Voisin (1997) and equation (6) of Khurgin and Voisin (1998).
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operator in the Bloch representation (Blount 1962). As shown in equations (3.12) and (3.13),
if E and k both lie in the z direction, all off-diagonal matrix elements eE · ξnn′(k) vanish at
the degeneracy point k = 0, since

lim
kz→0

ξznn′(0, 0, kz) = 0 (n �= n′) (6.1)

where n and n′ are equal to X, Y , or Z. However, the mixing in the Bloch version of
the Khurgin–Voisin Hamiltonian does not vanish in this case. Therefore, their Hamiltonian
does not correctly describe the angular dependence of the field-induced mixing in the Bloch
representation. In addition, the Bloch version of their Hamiltonian omits the singular matrix
elements shown in equation (3.11). For both of these reasons, the Khurgin–Voisin model is
invalid in the Bloch representation.

In response to this criticism (Foreman 2000a), Khurgin and Voisin (2000) have argued
that the theory of Luttinger and Kohn is ‘irrelevant’ to the question of whether a dipole mixing
term should appear in the Luttinger–Kohn Hamiltonian, because the original paper (Luttinger
and Kohn 1955) was applied to crystals with inversion symmetry—hence lacking the Pockels
effect—and did not proceed beyond terms of order k2 in the Hamiltonian. This response is
unsatisfactory because the work of Luttinger and Kohn (1955) establishes clearly a general
procedure that may be extended to arbitrary order (Kohn 1959) and applied to crystals of
any symmetry (Dresselhaus 1955, Kane 1957). When this extension is performed (Foreman
2000b), one finds unequivocally that the proposed dipole mixing effect does not exist.

This does not imply that there is no electronic mechanism for the Pockels effect in the
Luttinger–Kohn representation; it merely implies that the actual mechanism is different from
the one proposed by Khurgin, Krebs, and Voisin (Khurgin 1994, Krebs and Voisin 1996,
Khurgin and Voisin 1997, 1998). The results derived in section 5 provide evidence for three
mechanisms related to the inversion asymmetry of the zinc-blende structure: the terms of order
k3 in the Hamiltonian (3.8), and the coefficientsB andD in the momentum matrix (5.31). None
of these mechanisms was considered in the work of Khurgin, Krebs, and Voisin.

In their response, Khurgin and Voisin (2000) provide an alternative derivation of their
model that is based on k · p theory†. The derivation consists of a calculation of the coordinate
matrix element (2.10) using the identity (2.14). Since the matrix element (2.10) is physically
meaningless and the identity (2.14) is invalid, their calculation is obviously on very shaky
ground. However, due to the cancellation of errors mentioned above, the result that they
obtain does have some significance—provided that one interprets it as the crystal coordinate
matrix element (3.7). This interpretation is adopted in what follows.

Khurgin and Voisin (2000) do not mention what representation they are using, but equation
(3.7) is valid only in the Bloch representation. Hence, their derivation has no bearing at all on
the Hamiltonian in the Luttinger–Kohn representation‡. One cannot construct a Hamiltonian
by grafting together pieces from different representations; one must use a single representation
self-consistently, as was done in sections 4 and 5 for the Luttinger–Kohn Hamiltonian.

Khurgin and Voisin’s (2000) derivation is also of very limited relevance in the Bloch
representation. What they show is that the matrix element ξzXY (kx, 0, 0) is non-zero near the
degeneracy point k = 0:

lim
kx→0

ξzXY (kx, 0, 0) �= 0 (6.2)

† Strangely enough, in their original articles (Khurgin and Voisin 1997, 1998) these authors stated quite emphatically
that k · p theory cannot be used to describe the Pockels effect!
‡ It is important to remember that the zero-field eigenkets of the Luttinger–Kohn Hamiltonian do not form a basis for
the Luttinger–Kohn representation; they form a basis for the Bloch representation.
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which was shown above in equation (3.10). This result is valid, but their interpretation of it
is not. They interpret this limiting value as ‘the’ matrix element of z, implying that the value
obtained is unique and unambiguous. It is not. If one approaches the degeneracy point along
the kz-axis rather than the kx-axis, one obtains a limit of zero:

lim
kz→0

ξzXY (0, 0, kz) = 0 (6.3)

as shown in equation (3.12). Hence, the crystal coordinate matrix is a non-analytic, direction-
dependent function that does not possess a unique limit at k = 0. It is incorrect and misleading
to treat this quantity as a simple constant.

Thus, although the property (6.2) is certainly suggestive, this property alone is not sufficient
to justify the Khurgin–Voisin model. As shown above, most other features of their model are
at variance with the known behaviour of the Bloch representation near k = 0.

7. Conclusions

During the course of this review, no theme has featured more prominently than the importance of
careful attention to the basic definitions and theorems of quantum-mechanical representation
theory. The representations of primary interest have been the Bloch and Luttinger–Kohn
representations. In both formalisms there is a clearly defined and unambiguous procedure
for handling the coordinate and momentum operators. Neither theory makes any reference to
the coordinate matrix element of a unit cell. Thus, in spite of their obvious intuitive appeal,
such matrix elements have no place in either Hamiltonian. Indeed, since they depend on the
arbitrary choice of unit cell, they have no place in any well-defined Hamiltonian.

The Bloch representation has a long history of success for problems involving non-
degenerate bands in external fields. However, for degenerate bands, the existence of
singularities in the coordinate matrix has led most authors to abandon the Bloch representation
and search for other ways of treating such problems (Wannier (1960), appendix I; Roth (1962);
Blount (1962), p 319; Aspnes and Bottka (1972), p 501). These singularities lead directly to
a poor localization of Wannier functions (Blount 1962, Zak 1985), and much effort has gone
into finding alternative definitions for Wannier functions with better localization properties
(des Cloizeaux 1963, 1964a, b, Kohn 1973, Zak 1985). There is of course nothing preventing
one from working in the Bloch representation and tackling the singularities by brute force, but
to the author’s knowledge this approach has never been used in the literature.

The Luttinger–Kohn formalism eliminates these singularities by choosing basis states
that are analytic functions of k. Consequently, virtually all theoretical work on degenerate
bands in external fields is performed using some variant of the Luttinger–Kohn representation.
Although the theory has been in use for nearly half a century, some of its features are only
just now coming to light; for example, the existence of electric-field-induced mixing at the
Brillouin zone boundary was unknown a year ago (Burt 1999). At present there are no clear
physical examples in which this effect is important, but it could play a role in the theoretical
description of �–X mixing experiments for valence electrons.

However, the primary utility of the Luttinger–Kohn representation is for experiments that
sample only a small region in k-space. In this case, zone-boundary mixing may be neglected,
and the leading non-relativistic mixing terms arising from an electric field are of order kE and
E2. The only terms of order E are small terms of relativistic origin, which would be negligible
under most circumstances. These conclusions are valid for crystals of any symmetry and at
any point in the Brillouin zone.

Thus, even though the concept of a dipole interaction between degenerate states seems
plausible at first glance, it cannot be reconciled with the Luttinger–Kohn representation. This
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does not rule out the existence of such an interaction in some other representation; however, at
present there exists no alternative to the Luttinger–Kohn theory for the analytical description
of degenerate bands in semiconductors.
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Appendix A. Blount’s (1962) approach to the coordinate operator

A useful alternative form of the wave-function expansion (4.14) is

ϕ(x) =
∫
�∗

α(k,x) d3k (A.1)

where the function α is defined by

α(k,x) =
∑
n

ϕn(k)χnk(x). (A.2)

One can use equations (4.2) and (4.18) to express α as

α(k,x) = (2π)−3/2
∑
G

ϕ(k + k0 + G)ei(k+k0+G)·x. (A.3)

This shows that α is periodic in k:

α(k + G,x) = α(k,x). (A.4)

The integrals (A.1) and (4.14) are therefore independent of the choice of unit cell. Since α is
periodic, one can expand it in a Fourier series:

α(k,x) =
∑
R

αR(x)e
i(k+k0)·R

αR(x) = (�∗)−1
∫
�∗

α(k,x)e−i(k+k0)·R d3k (A.5)

where R is a Bravais lattice vector in coordinate space. The Fourier coefficients αR(x) are
calculated by inserting (A.3) into (A.5), which yields

αR(x) = (�∗)−1ϕ(x − R) (A.6)

and

α(k,x) = (�∗)−1
∑
R

ϕ(x − R)ei(k+k0)·R. (A.7)

Substitution of (A.7) into the integrand of (A.1) then yields the expected result ϕ(x).
One can now evaluate the action of the coordinate operator in the Luttinger–Kohn rep-

resentation by taking the gradient of (A.2):

∇kα(k,x) = ixα(k,x) +
∑
n

χnk(x)∇kϕn(k). (A.8)

The gradient of a periodic function is just another periodic function, but with an average value
of zero. Hence, the integral of (A.8) over a unit cell is zero:∫

�∗
∇kα(k,x) d3k = 0. (A.9)
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To demonstrate this more explicitly, one can use equation (A.7) to obtain

∇kα(k,x) = i(�∗)−1
∑
R

Rϕ(x − R)ei(k+k0)·R (A.10)

which implies ∫
�∗

∇kα(k,x) d3k = i
∑
R

Rϕ(x − R)δR,0 = 0. (A.11)

This result may also be obtained by using Gauss’s theorem (Arfken (1985), p 59):∫
�∗

∇kα(k,x) d3k =
∫
�∗

α(k,x) dS = 0 (A.12)

where dS is an element of area normal to the surface enclosing the unit cell �∗. The surface
integral vanishes due to the periodicity property (A.4). Thus, the integral of equation (A.8)
over a unit cell gives

xϕ(x) =
∑
n

∫
�∗

χnk(x)[i ∇kϕn(k)] d3k (A.13)

which is the result obtained previously in equation (4.33). The right-hand side of (A.13) may
be evaluated using equations (A.2) and (A.7):∑
n

∫
�∗

χnk(x)[i ∇kϕn(k)] d3k =
∫
�∗

eik·xi ∇k[e−ik·xα(k,x)] d3k

= (�∗)−1
∫
�∗

∑
R

(x − R)ϕ(x − R)ei(k+k0)·R d3k

=
∑
R

(x − R)ϕ(x − R)δR,0 = xϕ(x) (A.14)

thus reproducing equation (A.13). The second line shows clearly that the integrand is periodic
in k, so (A.13), like (4.14), does not depend on the choice of unit cell.
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